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DECOMPOSITION METHODS FOR LABEL PROPAGATION

LEHEL CSATÓ AND ZALÁN BODÓ

Abstract. In semi-supervised learning we exploit the “information” pro-

vided by an unlabelled data-set, in addition to the usually small training
data-set. A commonly used semi-supervised method is label propagation

[Zhu and Ghahramani, 2002] where labels are propagated from labelled to

unlabelled data by employing similarity measures.
The problem with the method is that it requires prohibitive time re-

quirements, therefore when a large amount of unlabelled data is used, a fea-

sible algorithm is needed to compute the labels. In this paper we propose
an approximation to label propagation. We divide the original problem into

sub-problems that are computationally less prohibitive. A decomposition into

K parallel sub-problems is considered where the sub-problems randomly and
sparingly communicate with each other.

1. Introduction

Semi-supervised learning [Zhu and Ghahramani, 2002; Bengio et al., 2006] can
be viewed as a generalisation of the classical pattern recognition algorithm to data
sets where only a fragment of the available data is labelled. The motivation is that
data labelling is a time consuming human activity whilst – in contrast – collecting
unlabelled samples is cheap leading to huge amounts of unlabelled data, a good
example is the data from DNA arrays [Cristianini and Hahn, 2006] with only a
tiny fraction processed, or the the huge document set from the internet, exploited
by Google [Page et al., 1998]. In semi-supervised learning the training data is aug-
mented with unlabelled data, i.e. L ∪ U = {(x1, y1), . . . , (x`, y`), x`+1, . . . , x`+u},
where ` and u are the sizes of the labelled and unlabelled parts respectively. We
assume ` � u and we use n = ` + u. The problem now is to assign labels to the
unlabelled part, using the information present in the joint data-set L ∪ U .

We consider the inputs, X = {x1, . . . , xn}, and infer the density of the inputs,
and with further assumptions about the structure of the data, we complete the
labelling process. Suppose for example that “professor” is a good predictor for the
study category, based on the labelled data alone. Then, if the words “professor”
and “university” are correlated in X , detection accuracy is improved when using
both words. We apply label propagation [Zhu and Ghahramani, 2002], to solve the
problem. It is a similarity-based technique where the labels are propagated based
on closeness between data items. In this article we propose an approximation to
handle large data-sets using ideas from stochastic sampling.
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2. Label propagation
Label propagation exploits the neighbourhood relation – the topology of the

embedding space to construct a graph with nodes from X and edges encoding
similarities; this graph is used to improve classification. Label propagation simu-
lates a diffusion process that propagates the labels to neighbouring edges leading
eventually to labels for the whole set X . The graph is fully connected with edges
weighted by the degree of similarity Wij of the nodes xi and xj:

(1) Wij = exp
(

−
d(xi, xj)

α2

)
and W

def
= {Wij}

n
i,j=1

where d(·, ·) is a distance between the points and α is the radius of similarity. Other
distance measures are the cosine similarity, Jaccard coefficient, Dice coefficient, or
the similarity in (1) [Luxburg, 2007; von Luxburg et al., 2007]. In the following we
use bold capitals for matrices and bold lowercase for vectors, other quantities are
scalars. We normalise the similarity matrix W, to obtain transition probabilities:

(2) Pij
def
= D−1/2 W D−1/2 where Dii =

n∑
j=1

Wij

with D diagonal. The resulting graph can be fully connected (see above) or sparse,
these are trimmed from full graphs by cutting edges with small weights [Zhu, 2005],
here we use only full matrices. We define the following label matrices, assuming c
classes (usually c > 2): YL an (`×c) matrix, each row corresponding to an item and
each column to a category; YU a (u×c) matrix to be estimated; Y = [YT

L , YT
U]T an

(n× c) matrix – the concatenation of the above two matrices. Label propagation
propagates labels using the following steps [Zhu and Ghahramani, 2002]:

(1) compute Y(t+ 1) = P Y(t).
(2) Reset the labelled data, YL(t+ 1) = YL(0), set t = t+ 1 and go to (1).

When the iterations converge, labels for the unlabelled examples are given simply
by taking the class with maximal label, an illustration is shown in Fig. 1. If
multiple classes are desired, one can threshold YU. It is interesting to note, that
Google’s efficient PageRank algorithm [Page et al., 1998] works in the same way,
except that label propagation is performed on a directed graph.

To analyse the algorithm we write the equilibrium solution as Y∗ − P Y∗ = 0,
where Y∗ denotes the equilibrium solution and 0 is the vector of zeroes of length n.
A subsequent step is to write the above algorithm as a constrained minimisation:

Y∗
U = argmin

YU

YT (In − P) Y(3)

= argmin
YU

[
YL

YU

]T [
IL − PLL −PT

UL

−PUL IU − PUU

] [
YL

YU

]
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Figure 1. Illustration of label propagation: the left sub-figure
shows the labelled data emphasised – there were 4 classes, and
the right-hand side shows the resulting labels.

where the values YL do not change, with the exact solution [Zhu, 2005]:

(4) Y∗
U = (IU − PUU)

−1
PUL YL

where we employed the matrix inversion lemma [Mardia et al., 1979]. As we see,
to have the solution, we have to compute the inverse of a large matrix, which has
cubic computation time O(u3) and can be costly for the large data-bases that
could potentially be exploited.

3. An approximate solution
We propose a decomposition for the above problem. For this first we consider

the optimisation problem from eq. (4) and observe that the labels can be decom-
posed into c components, Y = [y(1), . . . ,y(c)] and we have to solve the equations
independently. It is therefore enough to focus on two-class case, that is on a single
vector y(i) def

= y. Let {A1, A2, . . . , Ad} be a partition of the unlabelled set. Let us
decompose the large L

def
= In −P in blocks. We denote with Lk` the block assigned

to the pair Ak and Al, i.e. Lk` = {Lij|i ∈ Ak; j ∈ A`} leading to:

y =

yL = yA0

· · ·
yAd

 L =

L00 L01 · · · L0d

...
...

. . .
...

Ld0 Ld1 · · · Ldd


and the minimisation from eq. (3) is written as:

(5) yT (In − P) y =

d∑
a=0

d∑
b=0

yT
aLabyb

where we stress that a and b start from 0 to include the labelled part of the data.
We re-group the terms in eq. (5) to result in quadratic forms, each within a single
partition Ak. Obviously, there is a link part that is responsible for the global
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optimum, the resulting expression – equivalent to eq. (5) – is:

yT (In − P) y =

d∑
a=1

[
y0

ya

]T [
L00 L0a

La0 Laa

] [
y0

ya

]
− (d− 1)yT

0L00y0(6)

+2

d∑
a<b

yT
aLabyb

The minimisation of eq. (3) is now equivalent with the minimisation of d indepen-
dent small local quadratics, the label propagation problem taken on the labelled
set and A` each and the minimisation of the link terms yT

aLabyb, this latter mak-
ing the optimisation problem global. We note that the final eq. (6) is still exactly
the original label propagation problem. We aim for solving the small problems
separately and then adjusting the original clusters according to the fitness of the
clusters w.r.to the labelled set y0.
3.1. Algorithm. The proposed algorithm is stochastic minimisation that always
finds the local optima within a single partition and updates the partitions such
that the resulting subsets to be as uniform as possible. The algorithm is as follows:

• for k = 1, . . . , d compute local optima y∗
k;

• select pairs (k, `) where we compute pairwise fitness of the solution, the
last term in eq. (6): −yT

kLk`y`;
• make adjustments if cluster solutions do not agree: swap data xi and xj

that will lead to the largest increase in fitness, i.e. decrease in error.
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