DataMin seminars
2017 2016   2015   2014   2013   2012   2011   2010   2009   2008   2007
2014
25.06.2014
Wednesday
On criticality of High-Dimensional Data
Presenter: Lehel Csató
Links:
  • S. Saremi, T.J. Sejnowski, Neural Computation, 2014 PDF

15:00, Math207

18.06.2014
Wednesday
Random projections as regularizers: Laearning a linear discriminant ensemble from fewer observations than dimensions
Presenter: Lehel Csató
Links:
  • Robert J. Durrant, Ata Kabán, ACML, 2013 PDF

15:00, Math207

11.06.2014
Wednesday
Risk-sensitive Reinforcement Learning
Presenter: Lehel Csató
Links:
  • Oliver Mihatsch, Ralph Neunieier, Machine Learning 2002, vol 49, pp. 267--290.
  • Yu Shen, Michael J. Tobia, Tobias Sommer, Klaus Obermayer, http://arxiv.org/abs/1311.2097

15:00, Math207

04.06.2014
Wednesday
Memory Efficient Kernel Approximation
Presenter: Zalán Bodó
Links:
  • Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon, ICML, 2014 PDF

15:00, Math207

28.05.2014
Wednesday
Sparse PCA through low-rank approximations
Presenter: Lehel Csató
Links:
  • D.S. Papailiopulos, A.S. Dimakis, S. Korokythakis, ICML, 2013 PDF

15:00, Math207

21.05.2014
Wednesday
A Divide-and-Conquer Solver for Kernel Support Vector Machines
Presenter: Botond Bócsi
Links:
  • Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon, ICML, 2014 PDF

15:00, Math207

15.04.2014
Tuesday
Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning
Presenter: Hunor Jakab
Links:
  • Aaron Wilson, Alan Fern, Prasad Tadepalli (2014), Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning JMLR PDF

16:00, Math207

08.04.2014
Tuesday
Gaussian Processes for Big Data
Presenter: Botond Bocsi
Links:
  • James Hensman, Nicolo Fusi, Neil D. Lawrence. CoRR abs/1309.6835. 2013. PDF

16:00, Math207

01.04.2014
Tuesday
Probabilistic Model-based Imitation Learning
Presenter:Hunor Jakab
Links:
  • Englert P, Paraschos A, Petes J, Deisenroth M.P (2013) Probabilistic Model-based Imitation Learning, IEEE PDF

17:30, Math207

18.03.2014
Tuesday
Manifold Gaussian Processes for Regression
Presenter: Lehel Csató
Links:
  • Calandra R, Peters J, Rasmussen C.E, Deisenroth M.P (2014) Manifod Gaussian Process Regression, ArXiv publication PDF.

17:30, Math207

11.03.2014
Tuesday
Bayes Optimal Classification Algorithm
Presenter: Lehel Csató
Links:
  • Manfred Opper, David Haussler (1991) Generalization performance of Bayes Optimal Classification Algorithm for Learning a Perceptron PDF.
  • Doerthe Malzahn, Manfred Opper (2003): An Approximate Analytical Approach to Resampling Averages, Journal of Machine Learning Research, 4/1151-1173, PDF

17:30, Math207

04.03.2014
Tuesday
Fast Search in Hamming Space with Multi-Index Hashing
Presenter: Zalan Bodo
Links:
  • Mohammad Norouzi, Ali Punjani, David J. Fleet. Fast Search in Hamming Space with Multi-Index Hashing. PDF.

17:30, Math207

26.02.2014
Wednesday
Exponential Natural Evolution Strategies
Presenter: Botond Bocsi
Links:
  • Glasmachers, Tobias and Schaul, Tom and Sun, Yi and Wierstra, Daan and Schmidhuber, Juergen. GECCO, 2010. PDF.

15:00, Math207

31.01.2014
Friday
Statistical Modeling: The Two Cultures
Presenter: Zalan Bodo
Links:
  • Leo Breiman. Statistical Science, 2001. local PDF.

15:00, Math207

24.01.2014
Thursday
Quasi-Newton Methods: A New Direction
Presenter: Lehel Csato
Links:
  • Philipp Hennig, Martin Kiefel. JMLR, 2013. local PDF.

15:00, Math207